Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Educ ; 101(3): 1211-1217, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38495616

RESUMO

Molnupiravir is an orally bioavailable direct acting antiviral agent that received emergency use authorization in late 2021 from the FDA for the treatment of patients with mild, moderate, or severe COVID-19. This prodrug is metabolized into a ribonucleoside that is incorporated into the viral RNA during replication. Its tautomerization between cytidine- and uridine-like forms ultimately causes multiple irreversible errors in the genetic code of the virus, which prevents successful viral replication. There are multiple process chemistry routes for molnupiravir synthesis published in the literature that attempt to maximize synthetic yield while minimizing cost and waste, which are goals similar to those of an implementable educational laboratory experiment for the teaching laboratory. We have developed a multiweek laboratory module for undergraduate students in which students conduct a multistep synthesis of molnupiravir. Specifically, our Organic Chemistry II Laboratory students performed the final two steps of molnupiravir synthesis using procedures derived directly from the published process chemistry literature. We utilized this opportunity to introduce students to reading and interpreting these primary experimental sources. Students obtained authentic characterization data via high pressure liquid chromatography (HPLC) and nuclear magnetic resonance (NMR) spectroscopy to assess the conversion and purity of their products at each synthetic step. We report our in-lab activities and student generated data as well as suggestions for how this laboratory experiment could be tailored to meet similar learning objectives in other courses, such as medicinal chemistry or capstone laboratory courses, and as a function of available instrumentation.

2.
ACS Infect Dis ; 10(1): 232-250, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38153409

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) has evolved to become resistant to multiple classes of antibiotics. New antibiotics are costly to develop and deploy, and they have a limited effective lifespan. Antibiotic adjuvants are molecules that potentiate existing antibiotics through nontoxic mechanisms. We previously reported that loratadine, the active ingredient in Claritin, potentiates multiple cell-wall active antibiotics in vitro and disrupts biofilm formation through a hypothesized inhibition of the master regulatory kinase Stk1. Loratadine and oxacillin combined repressed the expression of key antibiotic resistance genes in the bla and mec operons. We hypothesized that additional genes involved in antibiotic resistance, biofilm formation, and other cellular pathways would be modulated when looking transcriptome-wide. To test this, we used RNA-seq to quantify transcript levels and found significant effects in gene expression, including genes controlling virulence, antibiotic resistance, metabolism, transcription (core RNA polymerase subunits and sigma factors), and translation (a plethora of genes encoding ribosomal proteins and elongation factor Tu). We further demonstrated the impacts of these transcriptional effects by investigating loratadine treatment on intracellular ATP levels, persister formation, and biofilm formation and morphology. Loratadine minimized biofilm formation in vitro and enhanced the survival of infected Caenorhabditis elegans. These pleiotropic effects and their demonstrated outcomes on MRSA virulence and survival phenotypes position loratadine as an attractive anti-infective against MRSA.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Loratadina/farmacologia , Virulência , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos , Biofilmes
3.
Adv Mater ; 35(22): e2302627, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37259701

RESUMO

Adv. Mater. 2018, 30, 1705796 https://doi.org/10.1002/adma.201705796 The above article, published online on January 15, 2018, in Wiley Online Library (https://doi.org/10.1002/adma.201705796), has been retracted by agreement between the authors, the journal Editor in Chief Jos Lenders, and Wiley-VCH GmbH. The retraction has been agreed on following concerns raised by a third party and a subsequent investigation at Wake Forest University. Data integrity issues were found in Figures 1a, S2b, and S17. As a result, the authors consider the conclusions of this article invalid.

4.
Pharmaceutics ; 14(8)2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-36015238

RESUMO

Bacterial infections due to biofilms account for up to 80% of bacterial infections in humans. With the increased use of antibiotic treatments, indwelling medical devices, disinfectants, and longer hospital stays, antibiotic resistant infections are sharply increasing. Annual deaths are predicted to outpace cancer and diabetes combined by 2050. In the past two decades, both chemical and physical strategies have arisen to combat biofilm formation on surfaces. One such promising chemical strategy is the formation of a self-assembled monolayer (SAM), due to its small layer thickness, strong covalent bonds, typically facile synthesis, and versatility. With the goal of combating biofilm formation, the SAM could be used to tether an antibacterial agent such as a small-molecule antibiotic, nanoparticle, peptide, or polymer to the surface, and limit the agent's release into its environment. This review focuses on the use of SAMs to inhibit biofilm formation, both on their own and by covalent grafting of a biocidal agent, with the potential to be used in indwelling medical devices. We conclude with our perspectives on ongoing challenges and future directions for this field.

5.
J Phys Chem A ; 126(26): 4211-4220, 2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35749658

RESUMO

Amide derivatives of xanthene dyes such as rhodamine B are useful in a variety of sensing applications due to their colorimetric responses to stimuli such as acidity changes and UV light. The optical properties of these molecules can be influenced by intermolecular associations into dimeric structures, but the exact impact can be hard to predict. We have designed a covalently linked intramolecular dimer of the dye rhodamine B utilizing p-phenylenediamine to link the two dyes via amide bonds. The doubly closed spirolactam version of this dimer, RSL2, is isolated as a colorless solid. Under acidic conditions or UV exposure, RSL2 solutions develop a pink color that is expected for the ring-opened form of the molecule. However, nuclear magnetic resonance (NMR) and single-crystal diffraction data show that the equilibrium still prefers the closed dimer state. Interestingly, the emission profile of RSL2 shows solvatochromic blue fluorescence. Control studies of model compounds with similar structural motifs do not display similar blue fluorescence, indicating that this optical behavior is unique to the dimeric form. This behavior may lend itself to applications of such xanthene dimers to more sophisticated sensors beyond those with traditional binary on/off fluorescence profiles.

6.
Adv Mater ; 30(9)2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29334145

RESUMO

Highly efficient and stable electrocatalysts, particularly those that are capable of multifunctionality in the same electrolyte, are in high demand for the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR). In this work, highly monodisperse CoP and Co2 P nanocrystals (NCs) are synthesized using a robust solution-phase method. The highly exposed (211) crystal plane and abundant surface phosphide atoms make the CoP NCs efficient catalysts toward ORR and HER, while metal-rich Co2 P NCs show higher OER performance owing to easier formation of plentiful Co2 P@COOH heterojunctions. Density functional theory calculation results indicate that the desorption of OH* from cobalt sites is the rate-limiting step for both CoP and Co2 P in ORR and that the high content of phosphide can lower the reaction barrier. A water electrolyzer constructed with a CoP NC cathode and a Co2 P NC anode can achieve a current density of 10 mA cm-2 at 1.56 V, comparable even to the noble metal-based Pt/C and RuO2 /C pair. Furthermore, the CoP NCs are employed as an air cathode in a primary zinc-air battery, exhibiting a high power density of 62 mW cm-2 and good stability.

7.
J Chem Phys ; 140(3): 034903, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25669410

RESUMO

We present the synthesis and characterization of a benzodithiophene/thiophene alternating copolymer decorated with rigid, singly branched pendant side chains. We characterize exciton migration and recombination dynamics in these molecules in tetrahydrofuran solution, using a combination of static and time-resolved spectroscopies. As control experiments, we also measure electronic relaxation dynamics in isolated molecular analogues of both the side chain and polymer moieties. We employ semi-empirical and time-dependent density functional theory calculations to show that photoexcitation of the decorated copolymer using 395 nm laser pulses results in excited states primarily localized on the pendant side chains. We use ultrafast transient absorption spectroscopy to show that excitations are transferred to the polymer backbone faster than the instrumental response function, ∼250 fs.


Assuntos
Dendrímeros/química , Polímeros/química , Tiofenos/química , Derivados de Benzeno/química , Transferência de Energia , Luz , Modelos Moleculares , Espectrofotometria
8.
J Am Chem Soc ; 132(32): 11027-9, 2010 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-20698665

RESUMO

A nickel-catalyzed stereoconvergent method for the enantioselective Suzuki arylation of racemic alpha-chloroamides has been developed. This process provides a unique example of an asymmetric arylation of an alpha-haloamide, an enantioselective arylation of an alpha-chlorocarbonyl compound, and an asymmetric Suzuki reaction with an activated alkyl electrophile or an arylboron reagent. The method is also applicable to the corresponding enantioselective cross-coupling of alpha-bromoamides. The coupling products can be transformed without racemization into enantioenriched alpha-arylcarboxylic acids and primary alcohols. A modest kinetic resolution of the alpha-chloroamide was observed; a mechanistic study indicated that the selectivity may reflect discrimination by the chiral catalyst of the two enantiomeric alpha-chloroamides in an irreversible oxidative-addition process.


Assuntos
Alcanos/química , Amidas/química , Estereoisomerismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...